Space Technology Research Grants

PICULS: Photonic Integrated Circuits for Ultra-Low Size, Weight and Power

Completed Technology Project (2016 - 2019)

Project Introduction

Integrated photonics can greatly reduce the size, weight and power of transceivers for space optical communications while improving performance and reliability. Photonic integrated circuits (PICs) combine photonic functions on a single chip. By employing CMOS-compatible PIC technology to realize high data rate space optical communication transceivers, we can leverage the manufacturing technology developed for the microelectronics industry and cointegrate electronics and photonics.

Anticipated Benefits

Integrated photonics can greatly reduce the size, weight and power of transceivers for space optical communications while improving performance and reliability.

Primary U.S. Work Locations and Key Partners

PICULS: Photonic Integrated Circuits for Ultra-Low Size, Weight and Power

Table of Contents

Project Introduction	1
Anticipated Benefits	1
Primary U.S. Work Locations	
and Key Partners	1
Project Website:	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	2
Technology Areas	3
Target Destination	3

Space Technology Research Grants

PICULS: Photonic Integrated Circuits for Ultra-Low Size, Weight and Power

Completed Technology Project (2016 - 2019)

Organizations Performing Work	Role	Туре	Location
University of California- Santa Barbara(UCSB)	Lead Organization	Academia Asian American Native American Pacific Islander (AANAPISI), Hispanic Serving Institutions (HSI)	Santa Barbara, California
Goddard Space Flight Center(GSFC)	Supporting Organization	NASA Center	Greenbelt, Maryland

Primary U.S.	Work	Locations
--------------	------	-----------

California

Project Website:

https://www.nasa.gov/strg#.VQb6T0jJzyE

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

University of California-Santa Barbara (UCSB)

Responsible Program:

Space Technology Research Grants

Project Management

Program Director:

Claudia M Meyer

Program Manager:

Hung D Nguyen

Principal Investigator:

Jonathan Klamkin

Technology Maturity (TRL)

Space Technology Research Grants

PICULS: Photonic Integrated Circuits for Ultra-Low Size, Weight and Power

Completed Technology Project (2016 - 2019)

Technology Areas

Primary:

- TX02 Flight Computing and Avionics
 - □ TX02.1 Avionics
 Component Technologies
 □ TX02.1.2 Electronic
 Packaging and
 Implementations

Target Destination Earth

